
Dusan Palider

Do not try any of the techniques discussed in this
presentation on a system you do not own.

It is illegal and you will get caught.

 Introduction

 OWASP & OWASP Top 10

 More on Injection & XSS

 Q&A

 do you use the internet?

 visit forums?

 use multiple tabs in your browser?

 use online banking?

 you are logged into your bank

 in a separate tab you visit a forum (or a webpage)

 in the forum/page someone placed a JS code that
executes and transfers money out of your account

 a very unsafe forum site or an evil page
 allows you to upload the script

 slightly unsafe bank site
 allows the script to execute.. but there may not be much

the bank can do here

 code specific to a bank
 which bank?

 HSBC
 Key Bank
 Chase
 Bank Of America

 www.owasp.org

 The Open Web Application Security Project

 “a … not-for-profit worldwide charitable organization
focused on improving the security of application
software”

http://www.owasp.org/

 top 10 vulnerabilities
 updated every year
 for 2010:

 A1: Injection
 A2: Cross-Site Scripting (XSS)
 A3: Broken Authentication and Session Management
 A4: Insecure Direct Object References
 A5: Cross-Site Request Forgery (CSRF)
 A6: Security Misconfiguration
 A7: Insecure Cryptographic Storage
 A8: Failure to Restrict URL Access
 A9: Insufficient Transport Layer Protection
 A10: Unvalidated Redirects and Forwards

 What:
 attacker gets the application to carry out a command

 How:
 we allow unsafe input to get into an interpreter & execute it as

a command

 What to do:
 canonicalize and validate user input
 encode application output
 use parameterized queries
 don’t call OS directly
 use ESAPI library
 use APIs that wrap OS

 What:
 attacker executes a script against a user

 How:
 we allow unsafe input containing a script to be carried

out against an unsuspecting user visiting a website

 What to do:
 canonicalize and validate user input

 encode application output

 use Microsoft’s AntiXSS library

 use ESAPI library

 What:
 attacker manages to impersonate another user

 How:
 we do not manage the session properly or use an unsafe

authentication

 What to do:
 clear out the session @ start and @ end
 do not store session ID in URL
 store and transport user credentials safely (SSL)
 ask user to re-authenticate before carrying out a

sensitive operation
 expire session after a timeout

 What:
 the application exposes a direct object reference to the

attacker, which allows the attacker to attack the
application

 How:
 use identifiers (such as primary keys) in

dropdowns/URLs/tables..

 What to do:
 create a mapping, so that way you don’t expose objects
 verify input against a white list
 validate user permissions to the action that was

requested

 What:
 attacker forces the browser to send a request to a target

website

 How:
 script is executed on the malicious site, hoping to attack

the target one

 What to do:
 re-authenticate before allowing a sensitive operation
 use a CSRF cookie to identify that the request is coming

from your page & verify it before processing
 use ESAPI
 use SessionID in Page.ViewStateUserKey and verify it

 What:
 default settings on an IIS/webserver/…

 leaking too much error information

 How:
 The infrastructure was not configured properly.

 We did not create user-friendly error messages.

 What to do:
 use custom errors in web.config

 do not allow debugging in web.config

 make sure all default accounts are disabled/protected

 What:
 encrypted data gets hacked (or data was never

encrypted)

 How:
 we don’t use (or incorrectly use) encryption

 What to do:
 do NOT write your own algorithm

 use hash of SHA-256 or better to hash passwords

 use AES, RSA to encrypt persisted data

 use ESAPI

 What:
 a user “guesses” a link in our application

 How:
 we do not check permissions for users landing on a page,

but rely on the page being “invisible” in menus

 What to do:
 block access to files never used in IIS
 use a permission matrix
 always validate role on PageLoad
 do NOT hide, but DISABLE links/buttons to screens

that the user should not see

 What:
 credentials or other data gets hacked while in transport

 How:
 did not use SSL or encryption (or weak encryption) to

protect the data

 What to do:
 use SSL when sending sensitive data/passwords

 use a secure SQL server connection (Encrypt=Yes)

 use correct encryption

 use ESAPI

 What:
 site is tricked into redirecting a user to an unsafe site

 How:
 we did not validate our forward, and an attacker tricked

the site into forwarding somewhere else

 What to do:
 do not forward

 if you have to forward, don’t combine the link w/ user
input

 check that the domain of the site matches

 allows an attacker supplied text be passed into an
interpreter, where the interpreter runs it as a
command, instead of treating it as a parameter

 SQL injection

 OS injection

 SOAP injection

 Xpath injection

 LDAP injection

 SMTP injection

 XML injection

 JS injection

 …

“select * from users where userID = ‘” + userFromSite + “’”
 if userFromSite is aaa’ OR ‘1’ = ‘1

 if userFromSite is aaa’; DROP TABLE users; --

“move file1.txt “ + fileNameFromUser
 if fileNameFromUser is file2.txt & delete c:*.* \quiet

 similar to injection – JS is executed against a user (web
browser acting as an interpreter)

 <SCRIPT>alert(‘Hello’);</SCRIPT>

 <SCRIPT>alert(document.cookie);</SCRIPT>

 never trust user input
 canonicalize user input (convert to a known encoding)
 validate user input on the server (white list)

 if fails, reject, do not filter

 encode data being shown to the user
 always use parameterized queries
 use prepared statements as much as you can

 do not generate them dynamically

 use existing APIs instead of direct calls to OS/other
interpreters

 restrict access as much as possible
 never trust the user

 Owasp & ESAPI – www.owasp.org

